## When Buttressing Matters: a sensitivity study

Todd K. Dupont & Richard B. Alley

Department of Geosciences & EESI
The Pennsylvania State University

Supported by NSF OPP grant 012618



#### **MOTIVATION**

- Ice shelves can buttress their ice streams
- Weaker ice shelves will buttress less
- Thinning and upstream migration of the grounding line may result



### **GOAL & APPROACH**

Goal : Assess the sensitivity of stream/shelf systems to a change in buttressing

Approach: Use a simple model to examine how an initially steady-state system responds to a loss of buttressing



#### **SNEAK PREVIEW**

- Ice shelves do matter, at least for "PIG-like" systems
- We have a nice tool ideal for reconnassance style studies



# **MODEL OVERVIEW**



- diagnostic momentum balance
- prognostic mass balance



## **MOMENTUM BALANCE**

- 1-d flowline, nondimensionalized, FEM treatment
- derived similarly to the plan-view eqn's of MacAyeal (1989)
- treats basal drag and lateral drag as boundary layer phenom.
- includes long. dev. stress
- appropriate for thin, channelized, free-surface, 'plug' flow
- buttressing applied as a boundary condition



## **MOMENTUM BALANCE cont'd**

$$\frac{\partial}{\partial x} \left( 2h\nu \frac{\partial u}{\partial x} - \frac{A}{2}h^2 \right) = G_s h u^{\frac{1}{n}} + \begin{cases} A\beta h + G_b u^{\frac{1}{m}} & h > h_f \\ -\frac{A}{2} \frac{1}{r_{sw}} \partial_x h^2 & h \leq h_f \end{cases}$$

 $stretching-press. grad. = side drag + \begin{cases} basal drag & grounded \\ ocean press. floating \end{cases}$ 

where x is the along-flow coordinate, h is thickness, u is velocity, n and m are the ice and basal flow-law exponents,  $r_{sw} = \rho_{sw}/\rho_i$  is nondim. density of seawater,  $\beta$  is the bed slope, and  $\nu \equiv \left|\frac{\partial u}{\partial x}\right|^{\frac{1-n}{n}}$  is the strain-rate dependent viscosity.

- *A* is a measure of the importance of ice thickness gradients
- G<sub>b</sub> measures the importance of basal drag
- ullet  $G_s$  measures the importance of side drag



### **MOMENTUM BALANCE cont'd**

#### Boundary conditions:

- Upstream (x = 0) boundary condition  $u(0, t) = u_0$
- Downstream, or terminal, (x = 1) boundary condition

$$\left[2h\nu\frac{\partial u}{\partial x} - \frac{A}{2}h^2\right]_{x=1} = -f\frac{A}{2}h(1)^2 - (1-f)\,r_{sw}\frac{A}{2}z_b(1)^2$$

f is the **buttressing parameter**, such that

- $\star f = 1 \leadsto$  fully buttressed condition
- $\star$   $f = 0 \sim$  freely-spreading condition = unbuttressed



## **MASS BALANCE**

- 1-d, time-dependent, non-dimensional
- derived from depth-integrated continuity
- neglects accumulation & lateral variations in thickness

$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} (uh)$$

thickening rate = flux convergence

#### Boundary condition:

• fixed upstream thickness,  $h(0,t) = h_0$ 



### **EXPERIMENTAL APPROACH**

- Start with a system which is at steady-state with 50% buttressing (f=0.5)
- Remove buttressing (f=0) and watch the system adjust



#### **EXPERIMENTS**

- Performed a reference experiment using "PIG-like" numbers
- Many sensitivity experiments were conducted (e.g., 20% incr. in G<sub>s</sub>, or 20% decr. A)



# **PIG GEOMETRY**



From Rignot et al., Ann. Glaciol., 39, in press



# **PIG-LIKE SCALES**

| Scale, constant or parameter | Value                                                           |
|------------------------------|-----------------------------------------------------------------|
| H                            | 1 km                                                            |
| $L_x$                        | 100 km                                                          |
| $L_y$                        | 20 km                                                           |
| U                            | $7.6 	imes 10^{-5}~\mathrm{ms}^{-1} pprox 2.4~\mathrm{km/year}$ |
| $B_i$                        | $2 	imes 10^8~{ m Pa~s}^{1/3}$                                  |
| $	au_b$                      | 0.73 bar                                                        |
| $	au_y$                      | 5.5 bar                                                         |
| $T = L_x/U$                  | $1.3 	imes 10^9 \ 	extsf{s} pprox 41 \ 	extsf{years}$           |

$$A \equiv \frac{\rho_i g H}{B_i \left(\frac{U}{L_x}\right)^{\frac{1}{n}}} = 50 \quad G_b \equiv \frac{\tau_b L_x}{H B_i \left(\frac{U}{L_x}\right)^{\frac{1}{n}}} = 40 \quad G_s \equiv \frac{\tau_y L_x}{L_y B_i \left(\frac{U}{L_x}\right)^{\frac{1}{n}}} = 15$$



# **EXPERIMENTS**

| experiment | $G_s$ | $\beta$ | $G_b$ | A  | $h_0$ | $u_0$ |
|------------|-------|---------|-------|----|-------|-------|
| reference  | 15    | 0.3     | 40    | 50 | 1.9   | 0.53  |
| $+G_s$     | 18    |         |       |    |       |       |
| <b>-</b> β |       | 0.24    |       |    |       |       |
| $+G_b$     |       |         | 48    |    |       |       |
| <b>+</b> A |       |         |       | 60 |       |       |
| <b>-</b> A |       |         |       | 40 |       |       |
| $+h_0$     |       |         |       |    | 2.3   |       |
| $+u_0$     |       |         |       |    |       | 0.63  |



# **RESULTS:** reference





# **RESULTS:** reference, cont'd





# **RESULTS:** reference, cont'd





# **SENSITIVITY RESULTS**

| experiment      | g.l. retreat | init'l VAF | final VAF | VAF loss      |
|-----------------|--------------|------------|-----------|---------------|
|                 |              |            |           | (% of init'l) |
|                 |              |            |           |               |
| reference       | 0.18         | 0.34       | 0.23      | 0.11 (33%)    |
| +20% in $G_s$   | 0.14         | 0.37       | 0.27      | 0.10 (27%)    |
| -20% in $eta$   | 0.17         | 0.35       | 0.24      | 0.11 (32%)    |
| +20% in $G_b$   | 0.17         | 0.38       | 0.26      | 0.12 (32%)    |
| +20% in A       | 0.22         | 0.21       | 0.14      | 0.11 (43%)    |
| -20% in $\it A$ | 0.08         | 0.43       | 0.35      | 0.09 (20%)    |
| +20% in $h_0$   | 0.18         | 0.34       | 0.23      | 0.12 (34%)    |
| +20% in $u_0$   | 0.14         | 0.39       | 0.28      | 0.11 (28%)    |



#### **CONCLUSIONS**

- Loss of buttressing results in notable g.l. retreat and VAF loss (18 km &  $\sim$ 300 km<sup>3</sup>, respectively, using PIG scales)
- Thinning extends far upstream
- † buttressing sensitivity for ↓ side drag and †
   driving stress († basal drag)
- Siple Coast ice streams may be vulnerable
- Results are likely conservative
  - \* fixed upstream thickness
  - \* no sub-ice-shelf melting



#### **FUTURE WORK**

- Adaptive meshing → better efficiency
- Include dynamic accumulation/melting
- Free the upstream boundary
- Perform new, "improved", PIG-like experiments
- Perform Siple experiments

